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SOME REMARKS ON THE abc-CONJECTURE 

J. BROWKIN AND J. BRZEZINSKI 

ABSTRACT. Let r(x) be the product of all distinct primes dividing a nonzero 
integer x . The abc-conjecture says that if a, b, c are nonzero relatively prime 
integers such that a + b + c = 0, then the biggest limit point of the numbers 

logmax(lal, ibl, cil) 
log r(abc) 

equals 1. We show that in a natural anologue of this conjecture for n > 3 
integers, the largest limit point should be replaced by at least 2n - 5. We 
present an algorithm leading to numerous examples of triples a, b, c for which 
the above quotients strongly deviate from the conjectural value 1. 

1. INTRODUCTION 

Let a, b, c be nonzero integers such that 

a+b+c=O and gcd(a,b,c)=1, 

and let r(abc) be the product of distinct prime numbers dividing abc. J. 
Oesterle posed the question whether the numbers 

(1) L = L(a, b, c) = logmax(jaj, jbj, jcj) 
(1) L=L(a,b,c)- logr(abc) 
are bounded. This question was refined by D. W. Masser who conjectured that 
for each E > 0 there exists a positive constant C(e) such that 

max(lal, Ibl, Icl) < C(c)r(abc)l+e. 

This is the abc-conjecture. It is easy to see that the abc-conjecture is equivalent 
to the inequality 

limsup{L} < 1, 
where limsup{L} denotes the largest limit point of the quotients (1). But it 
is not difficult to show that there is a limit point of this set which is > 1. Thus 
the abc-conjecture can be formulated as the equality 

limsup{L} = 1. 

The first purpose of the present note is to comment on a rather evident 
generalization of the abc-conjecture to a statement involving n > 3 integers. 
We show that 1 in the above equality should be replaced by at least 2n- 5. This 

Received by the editor September 9, 1992 and, in revised form, April 15, 1993. 
1991 Mathematics Subject Classification. Primary 1 ID04; Secondary 1 lA55, 1 1C08, 1 IY65. 

i 1994 American Mathematical Society 
0025-5718/94 $1.00 + $.25 per page 

931 



932 J. BROWKIN AND J. BRZEZINSKI 

number is also our conjectural value in the "n-conjecture". The second objective 
of the paper is to present some numerical results concerning deviations of the 
quotient (1) from the conjectural value 1 in the case of abc-conjecture. Our 
results do not contradict the conjecture, but the presence of rather big prime 
factors in the triples a, b, c leading to quotients L strongly deviating from 1 
makes it somewhat questionable. 

2. THE n-CONJECTURE FOR Z 

Let a,, a2, ...,an E Z, where n > 3, satisfy 
(i) gcd(al, a2, . .., an) = 1, 
(ii) a, +a2+ **+an = O, 
(iii) no proper subsum of (ii) is equal to 0. 

Denote 

Mn =M= max(la}l), mn = m=r(al ..an), 
(2) 1<J<n 

Ln L(al, ... , an) = logMn/logmn. 

The n-conjecture asserts that, for given n > 3, 
1. the numbers Ln are bounded, 

and more precisely 
2. limsup{Ln} = 2n - 5, 

where Ln runs over numbers (2) corresponding to all n-tuples of integers sat- 
isfying (i)-(iii). 

Theorem 1. For every n > 3, 

limsup{Ln} > 2n - 5. 

First we prove a lemma. 

Lemma 1. For every k > 0, there exists a polynomial fk E Z[x] of degree k 
with positive coefficients such that 

( 3) X xk k(( I)) 

Proof. For aj = 2rj/(2k + 1), j = 1, 2, ..., k, we have 

x2k+ 1 J7k 
x - 

J 
I(X2 - 2x cosaj + 1) 
j=1 

=xk II ( + 2(1-cosaej)) =xk 

It is sufficient to take 
k 

fk(z) = 7 (z + 2(1 -cosaj)). 
j=1 

From (3) it follows that fk has integral coefficients, and since all its roots are 
negative, all its coefficients are positive. 51 
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Remark 1. One can also define the polynomial fk(z) explicitly: 

(4) fk(Z) = E k jIt(2j+1lzj 

or inductively: 
fo(z)=1, fi(z) = z + 3, 

and, for k > 1, 

(5) fk+1 (z) = (z + 2)fk(z) - fk-1 (z). 

Using (4) or (5), one can continue the list: 

f2(z) = z2 + 5z + 5, 

f3(z) = Z3 + 7z2 + 14z + 7, 

f4(z) = Z4+ 9z 3+ 27z 2+ 30z + 9, 
f(z) = z5 + llz4+44z3+77z2+55z+ 11, 

f6(z) = Z6 + 13z5 + 65z4 + 156z3 + 182z2 + 91z + 13. 

As in Lemma 1, one can prove the existence of polynomials gk E Z[x] of 
degree k with positive coefficients such that 

x2k+2 1 kg ((X 1)2) 

for k > 0. These polynomials can be defined by a formula similar to (4): 

(4,) gk(z) = E (k+ +llz, 
1=0 2j 

or inductively by 
go(z) =1, l(z) = z + 2, 

and, for k > 1, 

(5') gk+1(z) = (z + 2)gk(z) - gk-1(z). 

Let us note that the same arguments as in the proof of Lemma 1 give, for 
n > 2 , 

Dn (x) = Xq(n)/2 ((x 
- 1) 

where oDn is the nth cyclotomic polynomial, and Pn E Z[x] has positive co- 
efficients and degree b(n)/2 (+(n) is the Euler totient function). The splitting 
field of Pn is the maximal real subfield of the splitting field of JDn over the ra- 
tional numbers. Defining PI (x) = p2(x) = 1, one can easily prove that fk and 
gk are the products of all polynomials Pd for d dividing 2k + 1, respectively, 
2k +2. 

Proof of Theorem 1. Let 
k 

(6) fk(Z) =Z SjZj 

j=0 
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where according to Lemma 1, the sj are positive integers. If in (3) we put 
k = n - 3 and x = -aj/a2, then, in view of (6), we get 

n-3 

(7) a2 + a 2n-5 -E sj(al + a2-)2+l (-ala2)n-j-3 = 0. 
1=0 

If we choose a, = 2i, where i > 1, and a2 = -1, then we have a sum of 
n summands equal to zero, with no proper subsum equal to zero, since only 
the first summand is positive. The second summand is -1, hence the gcd of 
all summands is 1. Therefore the conditions (i)-(iii) of the n-conjecture are 
satisfied. With this choice of a, and a2, we have from (7), 

M = 2i(2n-5) 

Consequently, denoting c = 2sos1 ... Sn_3 and taking the logarithms to the base 
2, we get 

Ln i(2n - 5) _>i(2n 
- 5) 2 

logr((2i - 1)c) - i + log r(c) 
for i -x 00. Since there are infinitely many i such that the numbers 2i - 1 
are relatively prime (e.g., all prime i), it is easy to check that the quotients 
Ln corresponding to those i are different. Therefore, the set {Ln} has an 
accumulation point equal at least 2n - 5. O 

Remark 2. Let a1, a2, a3 satisfy the assumptions (i)-(iii) for the 3-conjecture 
with a1 = max (Ia II, Ia21, Ia31) and L3 = L(aI, a2, a3) . If for some n > 3, 
every prime divisor of the coefficients of fn-3 divides a1a2a3, then (7) gives 
an example for the n-conjecture with 

Ln = (2n- 5)L3, 

since Mn = a12n-5 and all other terms in (7) are negative. 
Thus, the example of E. Reyssat for the 3-conjecture 

235_109310 -2=0 

with L3 = 1.629912 gives the example 

2315 _ 1093 . 330 23 - 2 . 311 .235 .1o9 = 0 

for the 4-conjecture with L4 = 3L3 = 4.889735. 

THE n-CONJECTURE FOR K[t] 

Let K be a field of characteristic zero. For a nonzero polynomial a E K[t], 
let r(a) be the sum of the degrees of all distinct irreducible factors of a in 
K[t]. Let a1, a2, . .. , an E K[t], where n > 3, satisfy max,<j<n deg(aj) > 0 
and (i)-(iii) as above. Denote 

Mn = M= max deg(a), mn = m = r(al ..an), 
(2') 1 <j<n 

Ln = L(al .. an) = MnIMn- 

The n-conjecture asserts that for every n > 3, 

Mn < (2n - 5)(mn - 1) 
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Theorem 2. For every n > 3, 

limsup{Ln} > 2n - 5. 
Proof. Put in (7) a, = tr + 1, where r > 0 and a2 = -1 . Then 

n-3 

(8) (tr + 1)2n-5 - 1 - trZSit2rj(tr + i)n-j-3 = 0. 
j=0 

Thus, we have a sum of n summands satisfying the assumptions of the n- 
conjecture. Moreover, for (8), we have 

Mn = (2n - 5)r, mn =1 + r. 

Consequently, 

L (2n - 5)r 2n - 5 
1 +r 

for r- xoo. C1 

Remark 3. In the case of polynomial rings an estimation from above is known: 
{n- 10 

Ln < 2) 

(see [1], [7] and [8]). Thus, from Theorem 2, we get 

Corollary. If n = 3 or 4, then for the ring K[t] we have 

limsup{Ln} = 2n - 5. 

With a suitable modification of the definition of Ln, Theorem 2 and its 
corollary can be extended to algebraic curves of arbitrary genus over fields of 
characteristic zero (see [1], [7] and [8]). 

4. EXAMPLES RELATED TO THE abC-CONJECTURE 

The example of E. Reyssat given above can be interpreted as follows. The 
equality 

23 - 109*9=2, i.e., 2 _ 109 = 95 

implies that 23/9 is a good rational approximation to ~yTO`. Let us consider 
the continued fraction 

=41 -9 =[2, 1, 1, 4, 77733,... 

The very large term 77733 implies that the convergent [2, 1, 1, 4] gives a very 
good approximation to / 107`. In fact, we have [2, 1, 1, 4] = 23/9. 

Starting from this observation, we have made an extended computer search 
for continued fraction expansions of numbers zk. Having a suitable convergent 
of the continued fraction of k, say, p/q, we put c = max(kqn, pn), b = 
min(kqn, pfn), a = c - b (divided by gcd(a, b, c)) . We have also considered 
several rational numbers p/q which can be derived from the convergents of 
continued fractions, and which give good approximations to Vk such that p 
and q have many prime power divisors. 

The "obvious" idea was that if [ao, al, ... ] is the fraction, then one should 
look for the convergents corresponding to large ai in order to get a good ap- 
proximation. Then we looked for large q in the convergents p/q (which is 
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more reasonable). But it appears that these properties are not relevant in gen- 
eral. For example, the best-known result L = 1.629912 can be obtained not 
only from ~ Obut also from 250= [50, 14, 3, 2, 1, 1, 1, 1, ..] and 
the convergent of length 6 equal to 233/35 . 

Using this method, we obtained several new interesting examples (indicated 
B-B) and all previously known. All results with L > 1.4 known to us at present 
(March 15, 1993) are included in the table. It contains the examples given by 
B.M.M. de Weger in [6] and the examples constructed by A. Nitaj in [3]. We 
express our thanks to A. Nitaj for sending us his examples, which were obtained 
by a different method. We have also included one example of Xiao Gang (sent 
to us by B.M.M. de Weger, see also Oesterle [4]) and one of J. Kanapka (sent 
to us by N. Elkies). 

TABLE 

(version of March 15, 1993) 

1. 1.629912 2 + 310 . 109 = 235 E. Reyssat 
2. 1.625991 112 + 32. 56. 73 = 221 * 23 B. M. M. de Weger 
3. 1.623490 19 1307 + 7 * 292 318 = 28 . 322 . 54 B-B 
4. 1.580756 283 + 511 * 132 = 28 . 38 . 173 B-B, A. Nitaj 
5. 1.567887 1 + 2 * 37= 54. 7 B. M. M. de Weger 
6. 1.547075 73 + 310 = 2" . 29 B. M. M. de Weger 
7. 1.526999 13 * 196 + 230 *5 = 313 . 112 . 31 A. Nitaj 
8. 1.502839 239 + 58 . 173 = 2'0 . 374 B-B, A. Nitaj 
9. 1.497621 52 * 7937 + 713 = 218 * 37 . 132 B. M. M. de Weger 

10. 1.492432 22 11 + 32. 13'0 *17 * 151 * 4423 = 59 . 1396 A. Nitaj 
11. 1.491590 73 + 213 * 77 * 9412 2 316 . 1033 . 127 A. Nitaj 
12. 1.488865 112 + 39 * 13 = 2" * 53 B. M. M. de Weger 
13. 1.482910 37 + 215 38 . 5 B. M. M. de Weger 
14. 1.474450 1 + 316 * 7 23.11 .23 . 533 B-B, A. Nitaj 
15. 1.474137 72+ 2s0 * 11 . 532 = 34. 58 B-B, A. Nitaj 
16. 1.471298 34 . 199 + 1 18 = 23 . 57 . 73 B-B, A. Nitaj 
17. 1.461924 27 * 52 + 76 . 41 = 136 B. M. M. de Weger 
18. 1.457066 32 . 52 + 24 173 . 31i = 710 . 257 B-B, A. Nitaj 
19. 1.455673 1 + 25- .3. 52 = 74 B. M. M. de Weger 
20. 1.455126 32. 16 + 235 195 * 13883 B-B 
21. 1.452613 2'9 * 13 . 103+711 = 311 .53 . 112 B. M. M. deWeger 
22. 1.451344 35* 7 + 56. 67 = 220 B-B, A. Nitaj 
23. 1.450858 35 * 73 + 213 .233 . 59 = 53 . 196 B-B 
24. 1.450026 1 + 33* 53* 77 *23= 213 . 14.13 41 A. Nitaj 
25. 1.449651 1 + 3 55. 472 = 218 79 G. Frey 
26. 1.447977 112 43 + 59 72 *134 97 = 23* 3 * 737 A. Nitaj 
27. 1.447743 89+ 7 118 = 220*33. 53 B-B, A. Nitaj 
28. 1.446246 32. 57.79+ 229.13 = 117 .192 A. Nitaj 
29. 1.445064 2 * 132 + 58 = 3. 194 B-B, A. Nitaj 
30. 1.443307 1 + 212 * 53 = 35 . 72 .43 B. M. M. de Weger 
31. 1.443284 32 . 193 + 511 = 217 * 373 B-B, A. Nitaj 
32. 1.441441 313 + 2 * 17.415 = 3 . 57. 75 B-B, A. Nitaj 
33. 1.440969 34 * 232 + 315 = 215 . 53 . 7 B-B, A. Nitaj 
34. 1.439063 1 + 24 * 37 . 547 = 58 . 72 B. M. M. de Weger 
35. 1.438360 1 + 19 5093 = 2'9 . 34 . 59 B-B 
36. 1.436180 2 *135 + 76 . 1732 = 313 . 472 A. Nitaj 
37. 1.435006 2'0 . 7 + 57 = 38 . 13 B. M. M. de Weger 
38. 1.433464 2 5 .318 + 56 710 . 232 = 119 * 691 * 1433 A. Nitaj 
39. 1.433043 312 + 35 * 59 = 25 .234 . 53 B-B, A. Nitaj 
40. 1.432904 221 + 76 *17 * 82092 = 512 * 7432 A. Nitaj 
41. 1.431092 29 * 192 + 33 . 57 . 72 . 313= 596 . 73 A. Nitaj 
42. 1.430418 193 + 2 * 56 . 192 *11932 = 39 . 138 B-B, A. Nitaj 
43. 1.430176 36 * 72 . 13 X 1272 + 238 * 61 X 137 = 511 * 196 B-B 
44. 1.429552 39 * 29 + 76 * 432 = 224. 13 A. Nitaj 
45. 1.429007 321 + 72 . 116 . 199 = 2 138 .17 A. Nitaj 
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46. 1.428908 732 + 21" i14* 133 = 311 .55 .7 17 B-B 
47. 1.428323 11 + 73 *1672 = 2. 314 B-B, A. Nitaj 
48. 1.427566 73 +115 .1572 = 22. 310 . 75 B-B, A. Nitaj 
49. 1.427488 614 + 220 * 41 3* 832 = 322 * 5 * 19 * 167 A. Nitaj 
50. 1.427115 310 + 78. 23 = 29 5092 A. Nitaj 
51. 1.426753 31 + 25. 510.192 = 3. 75 . 113. 412 B-B, A. Nitaj 
52. 1.426565 3 + 53 = 27 B. M. M. de Weger 
53. 1.423381 52 11 + 133 .14832 = 229 . 32 B-B, A. Nitaj 
54. 1.421828 24 59 + 512. 19 = 33 . 112. 175 B-B, A. Nitaj 
55. 1.421575 57 + 115 132 = 215 * 72 17 B-B, A. Nitaj 
56. 1.421008 29 * 373- 89+ 39 * 59 - 31= 1036 B-B, A. Nitaj 
57. 1.420437 78 .19+ 215*52. 372 = 3 177 A. Nitaj 
58. 1.420036 233 + 39 * 57 * 31 = 27 * 73 . 13 *174 A. Nitaj 
59. 1.418919 72+ 217 . 182 = 38. 8092 B-B, A. Nitaj 
60. 1.418233 13 * 3499 + 239 34 . 511 . 139 B-B 
61. 1.417633 56. 1609 + 29 . 314 . 133 = 15234 B-B 
62. 1.416793 39 ' 433 + 513 * 5323 = 27 . 73 .236 A. Nitaj 
63. 1.416438 414 * 33941 + 312 . 197 = 223 . 59 .29 B-B 
64. 1.416051 3 . 54. 599 + 11 238 = 222 . 593 B-B, A. Nitaj 
65. 1.415561 73+513 *181 = 24. 3 11 .132 . 195 A. Nitaj 
66. 1.414503 311 * 54 + 7 .1 16 . 43 = 217 . 173 Xiao Gang 
67. 1.413698 26 * 5 137 + 314 = 136 B-B, A. Nitaj 
68. 1.413279 52 + 37 . 133 = 28 . 1372 B-B, A. Nitaj 
69. 1.413166 36 .1573 .283 + 2310 = 230 . 52 .112 .13 B-B, A. Nitaj 
70. 1.412681 5 + 3 = 2'0 a 173 B. M. M. de Weger 
71. 1.411680 793+36.7 . 11.135 = 218.433 A.Nitaj 
72. 1.411615 3 * 132 . 1049 + 239 * 292. 107 = 193 . 1396 B-B, A. Nitaj 
73. 1.410683 672. 2399 + 313 .1073 = 26. 515 B-B 
74. 1.410044 213 . 313 . 113 + 13 29 436. 673 = 520 .17 A. Nitaj 
75. 1.408973 72 + 835 = 22 * 312 . 17 * 109 B-B, A. Nitaj 
76. 1.407787 22 *13 + 73 * 415 . 181 = 314 . 5 . 673 A. Nitaj 
77. 1.407404 32 * 233 + 237 * 2932 = 215 . 52 . 135 . 312 A. Nitaj 
78. 1.407208 241 + 212 . 34.56 .1181 = 118 134 B-B 
79. 1.407051 39 . 163 +23* 116 .17 = 512 B-B, A. Nitaj 
80. 1.406524 79 + 32 * 57 . 133 = 216. 192 * 67 J. Kanapka 
81. 1.406420 2'9 * 3673 + 517 . 197 - 281 = 132 * 2516 A. Nitaj 
82. 1.406097 216 * 41 * 71 + 315 * 72 = 197 A. Nitaj 
83. 1.406079 5 * 72 + 132 * 433 = 2" . 38 B-B, A. Nitaj 
84. 1.405785 133+ 29 . 372 = 32 . 57 B-B, A. Nitaj 
85. 1.405443 224 . 35 + 5. 195 . 592 = 710 * 167 A. Nitaj 
86. 1.404484 631 + 226 * 5 * 292 = 33 * 710 * 37 B-B, A. Nitaj 
87. 1.404264 1 + 39 * 72 *197 = 27 * 57 . 19 B-B, A. Nitaj 
88. 1.403482 33 . 13 + 25 . 11 . 192.733 = 52.711 A. Nitaj 
89. 1.402183 312 * 56+ 79*312 = 29 *115 * 571 A. Nitaj 
90. 1.401979 233 . 5 + 39 . 76. 312. 97 = 1 1 .193 .1274 A. Nitaj 

Some words about the program. The examples are constructed with k, 
where 2 < k < 2. 105, 2 < n < 15 (for k < 100, we choose n up to 20, but 
the increase of n has not resulted in new examples). The computations were 
carried out with all convergents up to length 10 (for k < 100 up to 20 without 
new examples). In order to limit the computation time, we put the restriction 
c < 1015 (in some intervals for k, we took c < 1030). 

Of course, there is nothing which makes it impossible to continue computa- 
tions of new examples by using the same method. But it is much more desirable 
to understand why so many examples with large values of L can be constructed 
in such a way. The first of the three remarks concluding the paper is closely 
related to this question. 

Remark 4. As we noted before, all examples in the table can be obtained by 
using continued fractions of 'k for suitable n and k. In order to check 
this possibility, let us introduce the following notations. If x is a positive 
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integer, let n(x) be the largest exponent of prime numbers dividing x, and for 
s(x) > n(x), let x5(x) be the unique integer such that xx'(,) = r(x)s(x). We 
shall write x' when s(x) is clear from the context. With these notations, we 
have the following easy result: 

Lemma 2. Let a, b, c be positive integers such that a + b = c, and a = pb, 
where 0 < p < 1. If 

1 s(a) s(b) s(c) 
-< r(a) or P< r(b) or P<2r(c)' 

then r(a) is a convergent of s(Vafj, or r(b) is a convergent of s(/bE, or r(c) 
is a convergent of s(V3f7, respectively. 

Proof. Consider the third case, that is, p < s(c) . Using the mean value theo- 
rem, we get 

r(c)- 
s V b -Ir(c)a 1 r(c) - s'V?ic < ( i,(cc' - bc') < Ic) < s(=Fs(c)bc,(cIbc) s(c) b 2' 

Thus, r(c) is a convergent of s(Vf-7 (in fact, the second one). Similar argu- 
ments show that in the first case (or in the second, with a replaced by b), 
s(Val-- r(a) < 1, so r(a) is the first convergent of s(Val7. 

n 

Using Lemma 2, we can easily check that its assumptions are satisfied for 
almost all the examples in the table with s(x) = n(x) for x E {a, b, c} (in 
fact for all but five examples with x = b or c) . In any case, one can choose a 
sufficiently large value of, say, s(c), in order to fulfill these assumptions. Then, 
according to our algorithm, we get all the examples using the roots and their 
convergents given by the lemma. Of course, such a choice of n and k in &lk_ 
is not always the optimal one. 

Remark 5. There are other quotients, similar to (2), which are natural in con- 
nection with the abc-conjecture. Following [4] and [5], we let 

L' = L'(a, b, c) - log Iabcl 
L' = ~~~log r(abc)' 

for relatively prime nonzero integers a, b, c such that a + b = c . It is evident 
that the abc-conjecture implies the inequality 

limsup{L'} < 3. 

The deviations of the quotients L' from 3 have been studied intensively by 
A. Nitaj (see [3]). The biggest value L' = 4.419014 corresponds to Nitaj's 
Example 7 in the table. It is a better result than L' = 4.107567 corresponding 
to the example of Xiao Gang cited in [4] (Example 66 in the table). 

Remark 6. We observe that in all the examples in the table, the exponent of at 
least one of the prime numbers involved is < 2. If x is a nonzero integer, we 
say that x is n-powerful if pn divides x for each prime number p dividing 
x (2-powerful numbers are usually called powerful-see, e.g., [2, B16]). With 
this terminology, we do not have an example of 3-powerful integers a, b, c 
such that a + b = c, gcd(a, b, c) = 1 and L > 1.4 (or even with L > 1.2). 
However, 

2713 + 23 .35 .733 = 9193 
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with not impressive L. We do not know whether there are 4-powerful a, b, c 
such that a + b = c and gcd(a, b, c) = 1. But there are reasons to believe that 
there are no n-powerful integers satisfying these conditions when n > 5. In 
fact, our computations strongly suggest that 

max(lal, Ibl, Icl) ? r(abc)s 

with s < 1.65. If this is true, then for n-powerful numbers a, b, c, we get 
r(abc) < jFlabel. Therefore, labcIn < labcI3s < labcl5, so n < 5. 
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